Charles Darwin

On the Origins of species
by means of Natural Selection

Editions

| 1st November 24, 1859 | 2nd January 7, 1860 | 3rd 1861 |
| 4th 1866 | 5th 1869 | 6th Jan. 1872 [definitive edition]

AN HISTORICAL SKETCH (in all editions)

OF THE PROGRESS OF OPINION ON THE ORIGIN OF SPECIES,
PREVIOUSLY TO THE PUBLICATION OF THE FIRST EDITION

OF THIS WORK.

I WILL here give a brief sketch of the progress of opinion on the Origin of Species. Until recently the great majority of naturalists believed that species were immutable productions, and had been separately created. This view has been ably maintained by many authors. Some few naturalists, on the other hand, have believed that species undergo modification, and that the existing forms of life are the descendants by true generation of pre-existing forms. Passing over allusions to the subject in the classical writers the first author

who in modern times has treated it in a scientific spirit was Buffon. But as his opinions fluctuated greatly at different periods, and as he does not enter on the causes or means of the transformation of species, I need not here enter on details.

Lamarck was the first man whose conclusions on the subject excited much attention. This justly-celebrated naturalist first published his views in 1801; he much enlarged them in 1809 in his 'Philosophie Zoologique,' and subsequently, in 1815, in the Introduction to his 'Hist. Nat. des Animaux sans Vertebres.' In these [page xiv] works he upholds the doctrine that species, including man, are descended from other species. He first did the eminent service of arousing attention to the probability of all change in the organic, as well as in the inorganic world, being the result of law, and not of miraculous interposition. Lamarck seems to have been chiefly led to his conclusion on the gradual change of species, by the difficulty of distinguishing species and varieties, by the almost perfect gradation of forms in certain groups, and by the analogy of domestic productions. With respect to the means of modification, he attributed something to the direct action of the physical conditions of life, something to the crossing of already existing forms, and much to use and disuse, that is, to the effects of habit. To this latter agency he seems to attribute all the beautiful adaptations in nature—such as the long neck of the giraffe for browsing on the branches of trees. But he likewise believed in a law of progressive development; and as all the forms of life thus tend to progress, in order to account for the existence at the present day of simple productions, he maintains that such forms are now spontaneously generated.

1 Aristotle, in his 'Physicæ Auscultationes' (lib. 2, cap. 8, s. 2), after remarking that rain does not fall in order to make the corn grow, any more than it falls to spoil the farmer's corn when threshed out of doors, applies the same argument to organization: and adds (as translated by Mr. Clair Grece, who first pointed out the passage to me), 'So what hinders the different parts [of the body] from having this merely accidental relation in nature? as the teeth, for example, grow by necessity, the front ones sharp, adapted for dividing, and the grinders flat, and serviceable for masticating the food; since they were not made for the sake of this, but it was the result of accident. And in like manner as to the other parts in which there appears to exist an adaptation to an end. Wheresoever, therefore, all things together (that is all the parts of one whole) happened like as if they were made for the sake of something, these were preserved, having been appropriately constituted by an internal spontaneity, and whatsoever things were not thus constituted, perished, and still perish. We here see the principle of natural selection shadowed forth, but how little Aristotle fully comprehended the principle, is shown by his remarks on the formation of the teeth.

2 I have taken the date of the first publication of Lamarck from Isid. Geoffroy St-Hilaire's ('Hist. Nat. Generale,' tom. ii. p. 405, 1859) excellent history of opinion on this subject. In this work a full account is given of Buffon's conclusions on the same subject. It is curious how largely my grandfather, Dr Erasmus Darwin, anticipated the views and erroneous grounds of opinion of
Geoffroy Saint-Hilaire, as is stated in his 'Life,' written by his son, suspected, as early as 1795, that what we call species are various degenerations of the same type. It was not until 1828 that he published his conviction that the same forms have not been perpetuated since the origin of all things. Geoffroy seems to have relied chiefly on the condition of life, or the 'monde ambiant,' as the cause of change. He was cautious in drawing conclusions, and did not believe that existing species are now undergoing modification; and, as his son adds, "C'est donc un problème à réserver entièrement à l'avenir, supposé même que l'avenir doive avoir prise sur lui." [page] xv

In 1813, Dr. W. C. Wells read before the Royal Society 'An Account of a White Female, part of whose skin resembles that of a Negro; but his paper was not published until his famous 'Two Essays upon Dew and Single Vision' appeared in 1818. In this paper he distinctly recognises the principle of natural selection, and this is the first recognition which has been indicated; but he applies it only to the races of man, and to certain characters alone. After remarking that negroes and mulattoes enjoy an immunity from certain tropical diseases, he observes, firstly, that all animals tend to vary in some degree, and, secondly, that agriculturists improve their domesticated animals by selection; and then, he adds, but what is done in this latter case "by art, seems to be done with equal efficacy, though more slowly, by nature, in the formation of varieties of mankind, fitted for the country which they inhabit. Of the accidental varieties of man, which would occur among the first few and scattered inhabitants of the middle regions of Africa, some one would be better fitted than the others to bear the diseases of the country. This race would consequently multiply, while the others would decrease; not only from their inability to sustain the attacks of disease, but from their incapacity of contending with their more vigorous neighbours. The colour of this vigorous race I take for granted, from what has been already said, would be dark. But the same disposition to form varieties still existing, a darker and a darker race would in the course of time occur and as the darkest would be the best fitted for the climate, this would at length become the most prevalent, if not the only race, in the particular country in which it had originated." He then extends these same views to the white inhabitants of colder climates. I am indebted to Mr. Rowley, of the United States, for having called my attention, through Mr. Brace, to the above passage in Dr. Wells' work.

The Hon. and Rev. W. Herbert, afterwards Dean of Manchester, in the fourth volume of the 'Horticultural Transactions,' 1822, and in his work of the 'Amaryllidacea' (1837, pp. 19, 339), declares that "horticultural experiments have established, beyond the possibility of refutation, that botanical species are only a higher and more permanent class of varieties." He extends the same view to animals. The Dean believes that single species of each genus were created in an originally highly plastic condition, and that these have produced, chiefly by intercrossing, but likewise by variation, all our existing species.

In 1826 professor Grant, in the concluding paragraph in his well-known paper ('Edinburgh philosophical Journal,' vol. xiv. p. 283) on the Spongilla, clearly declares his belief that species are [page xvi] descended from other species, and that they become improved in the course of modification. This same view was given in his 55th Lecture, published in the 'Lancet' in 1834.

In 1831 Mr. Patrick Matthew published his work on 'Naval Timber and Arboriculture,' in which he gives precisely the same view on the origin of species as that (presently to be alluded to) propounded by Mr. Wallace and myself in the 'Linnean Journal,' and as that enlarged in the present volume. Unfortunately the view was given by Mr. Matthew

Lamarck in his *Zoonomia*, (vol. i. pp. 500-510), published in 1794. According to Iisd. Geoffroy there is no doubt that Goethe was an extreme partisan of similar views, as shown in the Introduction to a work written in 1794 and 1795, but not published till long afterwards: he has pointedly remarked ('Goethe als Naturforscher,' von Dr Karl Medinge s. 34) that the future question for naturalists will be how, for instance, cattle got their horns, and not for what they are used. It is rather a singular instance of the manner in which similar views arise at about the same time, that Goethe in Germany, Dr. Darwin in England, and Geoffroy Saint-Hilaire (as we shall immediately see) in France; came to the same conclusion on the origin of species, in the years 1794-5.
very briefly in scattered passages in an appendix to a work on a different subject, so that it remained unnoticed until Mr. Matthew himself drew attention to it in the 'Gardener's Chronicle,' on April 7th, 1860. The differences of Mr. Matthew's view from mine are not much importance: he seems to consider that the world was nearly depopulated at successive periods, and then re-stocked; and he gives as an alternative, that new forms may be generated "without the presence of any mould or germ of former aggregates." I am not sure that I understand some passages; but it seems that he attributes much influence to the direct action of the conditions of life. He clearly saw, however, the full force of the principle of natural selection.

The celebrated geologist and naturalist, Von Buch, in his excellent 'Description Physique des Iles Canaries' (1836, p. 147), clearly expresses his belief that varieties slowly become changed into permanent species, which are no longer capable of intercrossing.

Rafinesque, in his 'New Flora of North America,' published in 1836, wrote (p. 6) as follows: "All species might have been varieties once, and many varieties are gradually becoming species by assuming constant and peculiar characters"; but farther on (p. 18) he adds, "except the original types or ancestors of the genus."

In 1843-44 Professor Haldeman ('Boston Journal of Nat. Hist. U. States,' vol. iv. p. 468) has ably given the arguments for and against the hypothesis of the development and modification of species: he seems to lean towards the side of change.

The 'Vestiges of Creation' appeared in 1844. In the tenth and much improved edition (1853) the anonymous author says (p. 155): "The proposition determined on after much consideration is, that the several series of animated beings, from the simplest and oldest up to the highest and most recent, are, under the providence of God, the results, first, of an impulse which has been imparted to the forms of life, advancing them, in definite times, by generation, through grades of organisation terminating in the [page xvii] highest dicotyledons and vertebrata, these grades being few in number, and generally marked by intervals of organic character, which we find to be a practical difficulty in ascertaining affinities; second, of another impulse connected with the vital forces, tending, in the course of generations, to modify organic structures in accordance with external circumstances, as food, the nature of the habitat, and the meteoric agencies, these being the "adaptations" of the natural theologian." The author apparently believes that organisation progresses by sudden leaps, but that the effects produced by the conditions of life are gradual. He argues with much force on general grounds that species are not immutable productions. But I cannot see how the two supposed "impulses" account in a scientific sense for the numerous and beautiful co-adaptations which we see throughout nature; I cannot see that we thus gain any insight how, for instance, a woodpecker has become adapted to its peculiar habits of Life. The work, from its powerful and brilliant style, though displaying in the earlier editions little accurate knowledge and a great want of scientific caution, immediately had a very wide circulation. In my opinion it has done excellent service in this country in calling attention to the subject, in removing prejudice, and in thus preparing the ground for the reception of analogous views.

In 1846 the veteran geologist M. J. d'Omalius d'Halloy published in an excellent though short paper ('Bulletins de l'Acad. Roy. Bruxelles,' tom. xiii. p. 581) his opinion that it is more probable that new species have been produced by descent with modification than that they have been separately created: the author first promulgated this opinion in 1831.

Professor Owen, in 1849 ('Nature of Limbs,' p. 86), wrote as follows: -- "The archetypal idea was manifested in the flesh under diverse such modifications, upon this planet, long prior to the existence of those animal species that actually exemplify it. To what natural laws or secondary causes the orderly succession and progression of such organic phenomena may have been committed, we, as yet, are ignorant." In his Address to the British Association, in 1858, he speaks (p. lii.) of "the axiom of the continuous operation of creative power, or of the ordained becoming of living things." Farther on (p. xc.), after referring to geographical distribution, he adds, 'These phenomena shake our confidence in the conclusion that the Apteryx of New Zealand and the Red Grouse of England were distinct creations in and for those islands respectively. Always, also, it may be well to bear in mind that by the word "creation" the zoologist means" a process he knows not [page
reconcile Owen’s but and extracts that inference preposterous firmly by was read myself process “he knew not what.”

This Address was delivered after the papers by Mr. Wallace and myself on the Origin of Species, presently to & referred to, had been read before the Linnean Society. When the first edition of this work was published, I was so completely deceived, as were many others, by such expressions as ‘the continuous operation of creative power,’ that I included professor Owen with other palaeontologists as being firmly convinced of the immutability of species; but it appears (‘Anat. of Vertebrates,’ vol. iii. p. 796) that this was on my part a preposterous error. In the last edition of this work I inferred, and the inference still seems to me perfectly just, from a passage beginning with the words ‘no doubt the type-form,’ &c. (Ibid. vol. i. p. xxxv.), that professor Owen admitted that natural selection may have done something in the formation of a new species; but this it appears (Ibid. vol. iii. p. 798) is inaccurate and without evidence. I also gave some extracts from a correspondence between professor Owen and the Editor of the ‘London Review,’ from which it appeared manifest to the Editor as well as to myself, that professor Owen claimed to have promulgated the theory of natural selection before I had done so; and I expressed my surprise and satisfaction at this announcement; but as far as it is possible to understand certain recently published passages (Ibid. vol. iii. p. 798) I have either partially or wholly again fallen into error. It is consolatory to me that others find professor Owen’s controversial writings as difficult to understand and to reconcile with each other, as I do. As far as the mere enunciation of the principle of natural selection is concerned, it is quite immaterial whether or not professor Owen preceded me, for both of us, as shown in this historical sketch, were long ago preceded by Dr Wells and Mr. Matthews.

From a circular lately issued it appears that Dr Freke, in 1851 (‘Dublin Medical press,’ p. 322), propounded the doctrine that all organic beings have descended from one primordial form. His grounds of belief and treatment of the subject are wholly different from mine; but as Dr Freke has now (1861) published his Essay on the ‘Origin of Species by means of Organic Affinity,’ the difficult attempt to give any idea of his views would be superfluous on my part.

Mr. Herbert Spencer, in an Essay (originally published in the ‘Leader,’ March, 1852, and republished in his ‘Essays,’ in 1858), has contrasted the theories of the Creation and the Development of organic beings with remarkable skill and force. He argues from the analogy of domestic productions, from the changes which the embryos of many species undergo, from the difficulty of distinguishing species and varieties, and from the principle of general gradation, that species have been modified; and he attributes the modification to the change of circumstances. The author (1855) has also treated psychology on the principle of the necessary acquirement of each mental power and capacity by gradation.

In 1852 N. Naudin, a distinguished botanist, expressly stated, in an admirable paper on the Origin of Species (‘Revue Horticole,’ p. 102;
since partly republished in the 'Nouvelles Archives du Muséum,'
tom. i. p. 171), his belief that species are formed in an analogous
manner as varieties are under cultivation; and the latter process he
attributes to man's power of selection. But he does not show how
selection acts under nature. He believes, like Dean Herbert, that
species, when nascent, were more plastic than at present. He lays
weight on what he calls the principle of finitude, 'puissance
mystérieuse, indéterminée; fatalité pour les uns; pour les autres
volonté providentielle, dont l'action incessante sur les êtres vivants
détermine, à toutes les époques de l'existence du monde, la forme, le
volume, et la durée de chacun d'eux, en raison [page xx] de sa
destinée dans l'ordre de choses dont il fait partie. C'est cette
puissance qui harmonise chaque membre à l'ensemble, en
l'appropriant à la fonction qu'il doit remplir dans l'organisation
général de la nature, fonction qui est pour lui sa raison d'être.6

In 1853 a celebrated geologist, Count Keyserling ('Bulletin de la
Soc. Géolog.,' 2nd Ser., tom. x. p. 357), suggested that as new
diseases, supposed to have been caused by some miasma, have
arisen and spread over the world, so at certain periods the germs of
existing species may have been chemically affected by
circumambient molecules of a particular nature, and thus have given
rise to new forms.

In this same year, 1853, Dr Schaaffhausen published an excellent
pamphlet (Verhand. des Naturhist. Vereins der preuss. Rheinlands,'&c.), in which he maintains the development of organic forms on the
earth. He infers that many species have kept true for long periods,
whereas a few have become modified. The distinction of species he
explains by the destruction of intermediate graduated forms. Thus
living plants and animals are not separated from the extinct by new
creations, but are to be regarded as their descendants through continued
reproduction.

A well-known French botanist, N. Lecoq, writes in 1854 ('Etudes sur
Géograph. Bot.,' tom. i. p. 250), 'On voit que nos recherches sur la fixité
ou la variation de l'espèce, nous conduisent directement aux idées
émises, par deux hommes justement célèbres, Geoffroy Saint-Hilaire et
Goethe.' Some other passages scattered through N. Lecoq's large work,
make it a little doubtful how far he extends his views on the
modification of species.

The 'Philosophy of Creation' has been treated in a masterly manner by
Nothing can be more striking than the manner in which he shows that
the introduction of new species is 'a regular, [page xxi] not a casual
phenomenon,' or, as Sir John Herschel expresses it, "a natural in
contradistinction to a miraculous" process.

The third volume of the 'Journal of the Linnean Society' contains
papers, read July 1st, 1858, by Mr. Wallace and myself, in which, as
stated in the introductory remarks to this volume, the theory of Natural
Selection is promulgated by Mr. Wallace with admirable force and
clearness.

Von Baer, towards whom all zoologists feel so profound a respect,
expressed about the year 1859 (see Prof. Rudolph Wagner, a
"Zoologisch-Anthropologische Untersuchungen," 1861, s. 51) his
conviction, chiefly grounded on the laws of geographical distribution,
that forms now perfectly distinct have descended from a single parent-
form.

In June, 1859, professor Huxley gave a lecture before the Royal
Institution on the 'persistent Types of Animal Life.' Referring to such
cases, he remarks, "It is difficult to comprehend the meaning of such
facts as these, if we suppose that each species of animal and plant, or
each great type of organisation, was formed and placed upon the
surface of the globe at long intervals by a distinct act of creative power; and it is well to recollect that such an assumption is as unsupported by tradition or revelation as it is opposed to the general analogy of nature. If, on the other hand, we view 'Persistent Types' in relation to that hypothesis which supposes the species living at any time to be the result of the gradual modification of pre-existing species a hypothesis which, though unproven, and sadly damaged by some of its supporters, is yet the only one to which physiology lends any countenance; their existence would seem to show that the amount of modification which living beings have undergone during geological time is but very small in relation to the whole series of changes which they have suffered.'

In December, 1859, Dr Hooker published his 'Introduction to the Australian Flora.' In the first part of this great work he admits the truth of the descent and modification of species, and supports this doctrine by many original observations.

Introduction [6th edition]

When on board H.M.S. Beagle, as naturalist, I was much struck with certain facts in the distribution of the organic beings inhabiting South America, and in the geological relations of the present to the past inhabitants of that continent. These facts, as will be seen in the latter chapters of this volume, seemed to throw some light on the origin of species—that mystery of mysteries, as it has been called by one of our greatest philosophers. On my return home, it occurred to me, in 1837, that something might perhaps be made out on this question by patiently accumulating and reflecting on all sorts of facts which could possibly have any bearing on it. After five years' work I allowed myself to speculate on the subject, and drew up some short notes; these I enlarged in 1844 into a sketch of the conclusions, which then seemed to me probable: from that period to the present day I have steadily pursued the same object. I hope that I may be excused for entering on these personal details, as I give them to show that I have not been hasty in coming to a decision.

My work is now (1859) nearly finished; but as it will take me many more years to complete it, and as my health is far from strong, I have been urged to publish this abstract. I have more especially been induced to do this, as Mr. Wallace, who is now studying the natural history of the Malay Archipelago, has arrived at almost exactly the same general conclusions that I have on the origin of species. In 1858 he sent me a memoir on this subject, with a request that I would forward it to Sir Charles Lyell, who sent it to the Linnean Society, and it is published in the third volume of the Journal of that Society. Sir C. Lyell and Dr. Hooker, who both knew of my work—the latter having read my sketch of 1844—honoured me by thinking it advisable to publish, with Mr. Wallace's excellent memoir, some brief extracts from my manuscripts.

This abstract, which I now publish, must necessarily be imperfect. I cannot here give references and authorities for my several statements; and I must trust to the reader reposing some confidence in my accuracy. No doubt errors may have crept in, though I hope I have always been cautious in trusting to good authorities alone. I can here give only the general conclusions at which I have arrived, with a few facts in
illustration, but which, I hope, in most cases will suffice. No one can feel more sensible than I do of the necessity of hereafter publishing in detail all the facts, with references, on which my conclusions have been grounded; and I hope in a future work to do this. For I am well aware that scarcely a single point is discussed in this volume on which facts cannot be adduced, often apparently leading to conclusions directly opposite to those at which I have arrived. A fair result can be obtained only by fully stating and balancing the facts and arguments on both sides of each question; and this is here impossible.

I much regret that want of space prevents my having the satisfaction of acknowledging the generous assistance which I have received from very many naturalists, some of them personally unknown to me. I cannot, however, let this opportunity pass without expressing my deep obligations to Dr. Hooker, who, for the last fifteen years, has aided me in every possible way by his large stores of knowledge and his excellent judgment.

In considering the origin of species, it is quite conceivable that a naturalist, reflecting on the mutual affinities of organic beings, on their embryological relations, their geographical distribution, geological succession, and other such facts, might come to the conclusion that species had not been independently created, but had descended, like varieties, from other species. Nevertheless, such a conclusion, even if well founded, would be unsatisfactory, until it could be shown how the innumerable species, inhabiting this world have been modified, so as to acquire that perfection of structure and coadaptation which justly excites our admiration. Naturalists continually refer to external conditions, such as climate, food, etc., as the only possible cause of variation. In one limited sense, as we shall hereafter see, this may be true; but it is preposterous to attribute to mere external conditions, the structure, for instance, of the woodpecker, with its feet, tail, beak, and tongue, so admirably adapted to catch insects under the bark of trees. In the case of the mistletoe, which draws its nourishment from certain trees, which has seeds that must be transported by certain birds, and which has flowers with separate sexes absolutely requiring the agency of certain insects to bring pollen from one flower to the other, it is equally preposterous to account for the structure of this parasite, with its relations to several distinct organic beings, by the effects of external conditions, or of habit, or of the volition of the plant itself.

It is, therefore, of the highest importance to gain a clear insight into the means of modification and coadaptation. At the commencement of my observations it seemed to me probable that a careful study of domesticated animals and of cultivated plants would offer the best chance of making out this obscure problem. Nor have I been disappointed; in this and in all other perplexing cases I have invariably found that our knowledge, imperfect though it be, of variation under domestication, afforded the best and safest clue. I may venture to express my conviction of the high value of such studies, although they have been very commonly neglected by naturalists.

From these considerations, I shall devote the first chapter of this abstract to variation under domestication. We shall thus see that a large amount of hereditary modification is at least possible; and, what is equally or more important, we shall see how great is the power of man in accumulating by his selection successive slight variations. I will then pass on to the variability of species in a state of nature; but I shall, unfortunately, be compelled to treat this subject far too briefly, as it can be treated properly only by giving long catalogues of facts. We shall, however, be enabled to discuss what circumstances are most favourable to variation. In the next chapter the struggle for existence among all organic beings throughout the world, which inevitably follows from the high geometrical ratio of their increase, will be considered. This is the doctrine of Malthus, applied to the whole animal and vegetable kingdoms. As many more individuals of each species are born than can possibly survive; and as, consequently, there is a frequently recurring struggle for existence, it follows that any being, if it vary however slightly in any manner profitable to itself, under the complex and sometimes varying conditions of life, will have a better chance of surviving, and thus be NATURALLY SELECTED. From the strong principle of inheritance, any selected variety will tend to propagate its new and modified form.
This fundamental subject of natural selection will be treated at some length in the fourth chapter; and we shall then see how natural selection almost inevitably causes much extinction of the less improved forms of life, and leads to what I have called divergence of character. In the next chapter I shall discuss the complex and little known laws of variation. In the five succeeding chapters, the most apparent and gravest difficulties in accepting the theory will be given: namely, first, the difficulties of transitions, or how a simple being or a simple organ can be changed and perfected into a highly developed being or into an elaborately constructed organ; secondly, the subject of instinct, or the mental powers of animals; thirdly, hybridism, or the infertility of species and the fertility of varieties when intercrossed; and fourthly, the imperfection of the geological record. In the next chapter I shall consider the geological succession of organic beings throughout time; in the twelfth and thirteenth, their geographical distribution throughout space; in the fourteenth, their classification or mutual affinities, both when mature and in an embryonic condition. In the last chapter I shall give a brief recapitulation of the whole work, and a few concluding remarks.

No one ought to feel surprise at much remaining as yet unexplained in regard to the origin of species and varieties, if he make due allowance for our profound ignorance in regard to the mutual relations of the many beings which live around us. Who can explain why one species ranges widely and is very numerous, and why another allied species has a narrow range and is rare? Yet these relations are of the highest importance, for they determine the present welfare and, as I believe, the future success and modification of every inhabitant of this world. Still less do we know of the mutual relations of the innumerable inhabitants of the world during the many past geological epochs in its history. Although much remains obscure, and will long remain obscure, I can entertain no doubt, after the most deliberate study and dispassionate judgment of which I am capable, that the view which most naturalists until recently entertained, and which I formerly entertained--namely, that each species has been independently created--is erroneous. I am fully convinced that species are not immutable; but that those belonging to what are called the same genera are lineal descendants of some other and generally extinct species, in the same manner as the acknowledged varieties of any one species are the descendants of that species. Furthermore, I am convinced that natural selection has been the most important, but not the exclusive, means of modification.